3.462 \(\int \frac{\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=108 \[ -\frac{2 a \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{x}{b^2} \]

[Out]

x/b^2 - (2*a*(a^2 - 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*b^2*(a + b)^(3/2
)*d) - (a^2*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.142766, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2790, 2735, 2659, 205} \[ -\frac{2 a \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{x}{b^2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]

[Out]

x/b^2 - (2*a*(a^2 - 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*b^2*(a + b)^(3/2
)*d) - (a^2*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2790

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> -Simp[
((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 - b^2)), x] - Di
st[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(2*b*c*d - a*(c^2 + d^2)) + (a^2
*d^2 - 2*a*b*c*d*(m + 2) + b^2*(d^2*(m + 1) + c^2*(m + 2)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx &=-\frac{a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{a b+\left (a^2-b^2\right ) \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=\frac{x}{b^2}-\frac{a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (a \left (a^2-2 b^2\right )\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )}\\ &=\frac{x}{b^2}-\frac{a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (2 a \left (a^2-2 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^2 \left (a^2-b^2\right ) d}\\ &=\frac{x}{b^2}-\frac{2 a \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} b^2 (a+b)^{3/2} d}-\frac{a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.37213, size = 103, normalized size = 0.95 \[ \frac{-\frac{2 a \left (a^2-2 b^2\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{3/2}}-\frac{a^2 b \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}+c+d x}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]

[Out]

(c + d*x - (2*a*(a^2 - 2*b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) - (a^2*
b*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])))/(b^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.089, size = 200, normalized size = 1.9 \begin{align*} 2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{{b}^{2}d}}-2\,{\frac{{a}^{2}\tan \left ( 1/2\,dx+c/2 \right ) }{bd \left ({a}^{2}-{b}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) }}-2\,{\frac{{a}^{3}}{{b}^{2}d \left ( a-b \right ) \left ( a+b \right ) \sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) }+4\,{\frac{a}{d \left ( a-b \right ) \left ( a+b \right ) \sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x)

[Out]

2/d/b^2*arctan(tan(1/2*d*x+1/2*c))-2/d*a^2/b/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+
1/2*c)^2*b+a+b)-2/d*a^3/b^2/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2
))+4/d*a/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.29651, size = 1037, normalized size = 9.6 \begin{align*} \left [\frac{2 \,{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x \cos \left (d x + c\right ) + 2 \,{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x -{\left (a^{4} - 2 \, a^{2} b^{2} +{\left (a^{3} b - 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \,{\left (a^{4} b - a^{2} b^{3}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) +{\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d\right )}}, \frac{{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x \cos \left (d x + c\right ) +{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x -{\left (a^{4} - 2 \, a^{2} b^{2} +{\left (a^{3} b - 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) -{\left (a^{4} b - a^{2} b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) +{\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(2*(a^4*b - 2*a^2*b^3 + b^5)*d*x*cos(d*x + c) + 2*(a^5 - 2*a^3*b^2 + a*b^4)*d*x - (a^4 - 2*a^2*b^2 + (a^3
*b - 2*a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-
a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) -
 2*(a^4*b - a^2*b^3)*sin(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)
*d), ((a^4*b - 2*a^2*b^3 + b^5)*d*x*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*x - (a^4 - 2*a^2*b^2 + (a^3*b -
 2*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (a^4*b
- a^2*b^3)*sin(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.40347, size = 236, normalized size = 2.19 \begin{align*} -\frac{\frac{2 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{2} b - b^{3}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}} - \frac{2 \,{\left (a^{3} - 2 \, a b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{2} b^{2} - b^{4}\right )} \sqrt{a^{2} - b^{2}}} - \frac{d x + c}{b^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

-(2*a^2*tan(1/2*d*x + 1/2*c)/((a^2*b - b^3)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)) - 2
*(a^3 - 2*a*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1
/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^2*b^2 - b^4)*sqrt(a^2 - b^2)) - (d*x + c)/b^2)/d